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Abs lmci  In this paper a transport equation (TE) is derived that matches closely (within 
the limitation of an  in6nite target) the transpon model in the Monte Carlo mde TRIM. 
Initially, we derive a 'E that incorporates an arbimly Free-Right path length distribution 
function and a stopping energy. From this Te a coupled set of integral equations (for 
spatial moments up to order four) incorporating the liquid free-flight path model used 
in TRIM is derived. These integral equations for the liquid model are inmrporated into 
a revised version of the transport theory computer d e  BUBBIC using the two-parameter 
differential nuclear scattering cmss section. Also, for the gn.s-li!e model of the Free-Right 
path length distribution, the equivalence is shown between the new TE and the Lss 
backward linearized Boltnnann equation extended by Brice to include an intermediate 
energy. A mmparison between gas-like and liquid models is performed for the ion As 
implanted into aSi using both the KUBBlC mde and a parallel p " s s D '  MC mde based 
on m ~ .  Excellent agreement is obtained between Ihe computer d e s ,  even at very low 
energies, when u h g  the same frre-fligfzf path modeLr md sopping mer@. Significant 
deviations occur, however, between the gas-like and liquid models at energies below 
N IOkeV. when both models are used in the same d e .  

1. Introduction 

In a previous paper (Bowyer er a1 (1992a), hereinafter referred to as I) we performed 
high-resolution comparisons of the first eight moments of the range distribution of 
ions implanted into an amorphous homogeneous target as derived from two computer 
codes. The codes in question were a high-speed parallel processor Monte Carlo (MC) 
computer code based on TRIM (Ziegler er a1 1985), and our newly developed transport 
theory code KUBBIC employing an iterative solution technique (Winterbon 1986). ?b 
facilitate direct comparison, effort was made to match input quantities. Specifically, 
both codes incorporate nuclear scattering using the universal interatomic potential and 
BiersacPS two-parameter nzagic formula (Ziegler er a1 1985, ch 2) and the electronic 
energy-loss formalism described in Ziegler et al (1985) ch 3. lb match assumptions 
inherent in KUBBrc, the MC code was modified to treat targets of infinite extent and 
to use the gas-like model (in which the distribution of the free-flight path length is 
described by Poisson statistics (see, for example, Eckstein (1991) ch 7)) in place of the 
liquid model (in which a 6 function describes the free-flight path length distribution 
(Miyagawa and Miyagawa 1983; Eckstein 1991)) used in TRIM. Good agreement was 
obtained between KUBBIC and the modified MC code. However, when KUBBIC Was 
compared with the MC code using the liquid model, poor agreement was apparent 
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at energies below - 3OkeV for As ions implanted into aSi. The inadequacy of 
the one-parameter differential nuclear scattering cross section to predict third- and 
fourth-order moments was also demonstrated. Our aim in this paper is to derive a 
transport model that matches as closely as possible the MC code TRIM (still within 
the limitations of an infinite target). In order to perform this wc first derive a 
transport equation (TE) incorporating an arbitrary free-flight path length distribution 
function. The new TE includes explicitly the electronic energy loss as a frictional 
force integrated over the free-flight path, and a minimum energy at which the ion is 
assumed to stop. We show how this TE can be evaluated for both gas-like and liquid 
models. The 'E using the liquid model has been implemented in a revised version 
of KUBBlC Excellent agreement is obtained between KUBBlC incorporating the liquid 
model and the MC code incorporating the liquid model (as is the agreement betwcen 
KUBBIC and MC codes incorporating the gas-like model). 

2. Derivation of the TE using an arbitrary free-flight path length distribution function 

We wish to calculate the ion rest distribution function for an ion implanted into 
an amorphous homogeneous target of infinite extent, which is characterized by a 
free-flight path length distribution function f(l). We define F(E,i, E,,r)dr as the 
probability that an ion, of initial energy E and v$locity direction given by the unit 
vector ti, comes to rest (i.e. reaches an energy E,) at a vector range between r and 
r + dr. The function F( E,$, Es, r )  is normalized such that 

where the integration is performed over all T .  If E is less than E, then the ion does 
not travel any distance, hence 

F ( E , t i , E s , r )  = 6(r) for E < E,. (2) 

The free-flight path length distribution f(1) is defined such that f(l)dl is the 
probability that an ion will travel a distance between 1 and 1 + dl, between binary 
collisions, and is normalized such that 

lw f(1)dl = 1. (3) 

Consider the ion starting from the origin with initial energy E and velocity 
direction 8 (see figure 1). It will travel in the direction ti until it undergoes its 
first collision. Assuming that the interaction of the ion with the electronic structure 
can be represented as a frictional force, then to travel a distance 1 the ion will lose 
an energy TI given by 

I 
TI = N 1 S,(E)dl (4) 

where Se( E) is the electronic stopping power and N is the target atomic density. The 
collision at 1 will result in the ion changing state from [E - TI ,8] to [ E  - T, - T, ,ti'], 
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Pigon 1. Geometry assodated with 
Rcst Point the scattering event. 

where T, is the energy transferred to the target atom during the collision and 8' is 
the direction of motion of the scattered ion. Assuming binary elastic collisions the 
probability of the ion changing state may be written as (Winterbon er af 1970) 

where dun is the differential nuclear scattering cross section, 4' is the scattering 
angle in the laboratoly system, is the azimuthal scattering angle and un is the 
total nuclear scattering cross section. The probability that an ion travels a distance 
between 1 and 1 + dl whilst continuously slowing down to reach a state [E - TI,  4, 
and then gets scattered into a state [E - TI - T, ,GI] ,  is given by 

If the ion undergoes a scattering event then it has a probability density F (  E - Tl - 
T,,8', Es,r' )  of coming to rest at r ,  where, from figure 1, r' = r - 41. Hence, the 
probability density that the ion travels a free-flight path length between 1 and 1 + dl, 
gets scattered into state [E - TI - T,,O'], and eventually comes to rest at r, is 

d6, dp f(l)dlF(E' ,  a', E$, r - 8i)O( E' - E$)-- 
0" 27r (7) 

where E' = E - TI - T,. There is zero probability of this occurring if E' falls below 
E,. This is represented by a unit step function e(.). Summing (7) over all possible 
path lengths and states gives the probability density that the ion will scatter and come 
to rest at T :  
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where T,, and Tmin are the maximum and minimum energies transferred in a binary 
collision and we have assumed f(l) to be energy independent The unit step function 
e(.) limits the range of integration to scattering events that give E' > E,. If either 
the electronic energy loss or the scattering event causes E' to fall below E, then 
the ion has stopped at r = G l .  The probability that the ion does not travel further 
because it has energy less than E, is given by 

Hence the probability density of ions stopped after the first collision is 

The sum of the probability densities in (8) and (10) gives the original probability 
density: 

This is an integral equation governing the probability density function. A number 
of functions can be used for f ( l ) .  In addition to the gas-like and liquid models 
mentioned so far, a more realistic function can, in principle, he obtained by computer 
simulation using the amorphous target mode of the crystalline-target binary collision 
code MARLOWE (Robinson and 'Ibrrens 1974, Eckstein 1991). Using the gas-like 
model we have shown the equivalence between (11) and a vector version (Littmark 
and Gras-Marti 1978) of the LSS backward-linearized Boltzmann equation (Lmdbard 
el a1 1963) extended by Brice (1971) to include an intermediate energy. An outline of 
this derivation is shown in the appendix Biersack (1982) has presented a TE for the 
liquid model and has given qualitative assessments concerning the mean projected 
range and vertical straggling. However, no attempt was made to develop a full 
moment solution and a stopping energy was not considered. 

3. Moments solution for a plane-source TE 

In this section we take moments of a planesource TE and then expand using Legendre 
polynomials in order to obtain a general set of coefficients from which vertical, lateral 
and mixed moments can be obtained. A set of eight such coefficients can provide 
moments up to order four. 

To simplify development, we define F( E, 11, E,, r )d r  as the probability that an 
ion of initial energy E comes to rest (i.e. reaches an energy E,) at a depth between 
I and z + d r  when the ion starts in the direction cos-' q with respect to the z axis. 
This distribution is normalized such that 

m 
F(E,qrEs,z)dz = 1. (12) 



Transport equation model of ion implantation into infinite targets 2161 

The pointaource density function F(E,O,  E$ ,T) ,  using the angle + as defined in 
figure 1, can be written as F (  E, q, $, E%, I, y, 2). The planesource density function 
is related to the point-source density function by 

F ( E , q ,  E,, 2) = - 27r [n[llI F(E,q,+,E,,z,y,z)dxdydllr. (13) 

Performing the integrations in equation (13) on both sides of equation (11) and using 
the fact that 

where g ( l )  is an arbitrary function of I, gives a "E for the plane-source density 
function: 

where 
E, = E - T, (16) 

(17) q' = q cos +'( E,, T, ) + -sin +'(EI, T,,) cos 0. 
Assuming standard practice (Winterbon et a1 WO), the dependence on depth can 
be removed by taking spatial momem of equation (15) and the dependence on the 
velocity direction can be decoupled by expanding in terms of Legendre polynomials 
Pk(q) such that 

F"(E.q,E,) = F(E,97,E,,z)zndz 
n 

5 C@k+ I)F,R(E, E s ) p , ( ~ ) .  ( 1 8  
h=U 

Next, we let z1 = z - VI, followed by a binomial expansion of (zl + ql)". Integration 
over the azimuthal angle can be carried out by utilizing the addition theorem for 
Legendre polynomials. Then, multiplying each term of the resulting equation by 
P,(q) and integrating over all q, one obtains an equation governing the coefficients 
E ( E ,  EA: 
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Extracting the term s = n from the first summation of (19), moving it to the LHS 
and introducing r = n - s, results in the equation 

An integral driver term of the form derived by Winterbon e& al (1970) can be Seen 
embedded in the LHS of (20), and on the RHS is a source term depending on 
coefficients of maximum order FZ-'. The form of this equation is important for 
two reasons. Firstly, the system of integral equations constructed has the property 
that the coupling between equations is one way, i.e. equations in the set for higher- 
order moments depend only on equations for lower-order moments. Secondly, for a 
numerical solution the integral driver can be approximated by a first-order ODE and 
used within an iterative solution scheme (Winterbon 1986). 

4. Integral equations using the liquid model 

So far the derivation has retained the arbitrary freeflight path distribution function 
f(l). Introducing f(l) = 6(I - A), where X is the distance between nuclear events, 
a generator equation for the liquid model can be obtained: 

x ~ , s ' P , ( ? ) P , ( s ) d s N I T , "  Fr-'(E' ,E,)Pk(cos~'(El,T,))  
T.,a 

x O(E'- E,)da,(E,,T,) (21) 

where N = l / u n X ,  and we have redefined E, and E' as fol lm:  

E, = E - NS,( E)X E' = E - N Se( E) X - T, . (22) 

These new definitions assume that the electronic stopping power remains constant 
over the path length A. This approximation is used in TRIM versions 85 and 91. 
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5. Integral equations using the gas-like model 

For the gas-like model we have 

f(l) = (1/X)exP(-l/X) (23) 

where X is the mean distance between collisions. Inserting (23) into (l l) ,  and 
following arguments in the appendix, it can be shown that 

where 6," is a Kronecker delta. The normalization and initial conditions on F imply 
F,(  E, E,) = 1. Using the gas-like model results in the normal separation of the 
electronic energy loss from the integral driver term. Equation (24) has been derived 
previously by Littmark and Gras-Marti (1978). 

6. Implementation 

Equation (21) can be rewritten using the notation 

L F : ( E , & )  = Sk(E,E,) (25) 

where the driver term in operator notation, L,F;(E,E,), is given by the LHS of 
equation (21) and the source term S;( E, E,) is given by the RHS of equation (21). 
Manipulation of (25) can be simplified by the substitution of the scattering integrals 
(appearing in the driver and source terms) by a new variable 

@:(E', E,) = N F;( E', E,)P, (cos q5'( E,, T,))B( E' - E,)du,( E,, T,). 

(26) 
JT: 

The source coefficients S;(E, E,) up to a given order can be computed in terms of 
the new variable resulting in a sum of products of @:-' and powers of A. The terms 
pr-r can be back-substituted using 

P;(E ' ,E~)  = X-~F:(E,E~)-- s;(E,E,). (27) 

The source terms required for the computation of moments up to a given order can 
be constructed using a symbolic algebra computer package. The integral 
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in equation (21) can be evaluated using the recurrence formula 

[2/(2m + 1)14nk r = o  
( m  + ~ ) P ( T  - 1, m + 1, k )  + mP( r - 1 ,  m - 1 ,  k )  

r > 0. 
2 m + 1  

The source coefficients S;( E, E,) required for moments up to order four are 
presented in table 1. In this table, for convenience, we have introduced the mean 
projected range R, = 3F: and omitted the energy dependence on the coefficients 
F;(E, E,). Comparlng equations for the liquid model with the gas-like model reveals 
that the coefficients for the latter can be obtained from table 1 by setting X = 0. 
In the light of (29) this is not surprising, since the form of the source coefficients 
for the gas-like model can be obtained by extracting the term P = 1 from the outer 
summation of (21). 

Table 1. Liquidmodel source meffiticients 5'; for moments up to order four 

Implementation within a computer code of equations of the form (2.5) is'dkcussed 
in I. Noteworthy features of KUBBIC include the incorporation of the two-parameter 
scattering cross section using the nmgk formula in a form that changes the integration 
variable from transferred energy (used by all other known transport theory simulation 
codes) to impact parameter. The numerical solution of the coupled set of integral 
equations formed is carried out using the residual correction technique proposed by 
Winterbon (19%). Modifications to KUBBIC were required in order to incorporate 
the stopping energy E,. The operator C, in the source term of the first-order ODE 
(equation (30) in I), approximating a correction to the true solution, was modified to 
include the unit step function and the explicit incorporation of electronic ener&y loss. 
Compare equation (3) in I with the new definition given by (25). Note, however, that 
the treatment of electronic loss for the gas-like model remains the same as before, as 
demonstrated in the appendix. The maximum impact parameter pmax is set in both 
KUBBIC and MC codes according to scattering within a cylindrical volume u,X = 1 / N  
with X = N - ' / 3  to give 

We note parenthetically that, at energies below - lkeV, this value of pmax 
underestimates the elastic energy loss (a similar example can be found in Eckstein 
(1991) ch 7). In I, KUBBIC employed a different value of p,,, set to approximately 
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twice the value given by (30). This value was chosen to facilitate comparison with the 
KUBBIC code implementing the one-parameter differential nuclear scattering cross 
section. In the present paper the one-parameter cross section is not considered 
and, therefore, the overriding objective becomes the consistent comparison between 
transport theory and MC codes. 

7. Results 

7.1. Comparison of the gas-iike and the liquid models 

In figure 2 we compare eight moments of the range distribution for As ions implanted 
into an  amorphous homogeneous Si target of infinite extent using gas-like and 
liquid models. Comparisons are performed between the revised KUBBIC transport 
theory code and our parallel processor MC code based on TRIM. The eight moments 
compared are the mean projected range Rp, vertical straggle B,, skewness yz, vertical 
kurtosis p,, lateral straggle U=, lateral kurtosis 0, and the normalized mixed moments 
(z,,z:) and (z:,zt) (see Ashworth et a1 (1991) for details of the normalization). 
Comparisons take place over the energy range 1 keV to 1 MeV The stopping energy 
E, is set to 5eV in both codes. Using KUBBIC, convergence of results must be 
confirmed in terms of sensitivity to the energy grid and the number of correction 
iterations. Results using logarithmic energy grids of 20 and 30 points per decade 
were identical. No significant difference was apparent between results after six and 
eight iterations (though some slight instability of the moment p, computed using 
the liquid model is apparent). Convergence of both gas-like and liquid models is 
improved using central-moment TE as described in I. However, a delicate trade-off 
exists between the increased complexity of central-moment TE (i.e. running time per 
correction iteration) against reduction in the overall running time due to superior 
convergence. In the current implementations approximately thirty minutes of CPU 
time on a SUN4/75 is required to perform eight iterations using non-central TE and 
four iterations using central TE. Moments obtained from the MC code are the result 
of simulating lo6 ion trajectories for energies up to 100 keV The moments obtained 
a t  3oOkeV are the result of 2.5 x lo5 ions and at lMeV the result of le ions. 
Some details of the MC code have been updated to more closely resemble TRIM-91. 
For example, the ion is followed using three directional cosines as opposed to the 
two used in TRIM-85. In addition, the electronic energy loss experienced over the 
free-flight path is subtracted from the ion energy prior to nuclear scattering using the 
magic formula. The ordered nature of the electronic and nuclear interaaions used 
here is contrasted with TRIM45 (Ziegler et a1 1985) where the electronic energy loss 
and nuclear energy transferred in a collision are computed from the same ion energy 
and then subtracted simultaneously. 

The following comments are made concerning the comparison in figure 2 of 
gas-like and liquid models. Excellent agreement is obtained between the computer 
codes, even at very low energies, when using the same free-flight path models. 
Significant deviations occur, however, between the gas-like and liquid models, at 
energies below N lOkeV, when both models are used in the same code. The mean 
projected ranges and lateral straggles show no significant differences but, for the six 
remaining moments, divergence becomes apparent at energies below U IOOkeV and 
is very noticeable at 10 keV Below this energy significant deviation can be observed. 
Figures 3 (1keV) and 4 (3keV) compare the projected range profiles of the two 
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Figure 2 Comparison of moments [or As into aSi using gas-like and liquid models with 
E, = 5 e Y  0, MC with the gas-like model; *, MC with the liquid model; -, KUBBlC 
with the gas-like model and six iterations; - . -, as before but eight iterations; - - -, 
KUBBIC with the liquid model and six iterations; . . . . . ., as before but ren ilerations. 

models. In each figure, one profile is generated directly from the MC code and 
the other is reconstructed from moments generated by KUBBIC. The latter profile 
is generated using the Pearson function of type I. Full details of various Pearson 
function types and their applicability to profile construction for various ion-target 
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Flgure 3. Comparison of projected a n g e  profiles Figure 4. Comparison of projected range profiles 
for As into aSi at 1 keV using gas-like and liquid for As into aSi at 3keV using gas-like and liquid 
models with E, = S e V  0, MC with the liquid models with E. = S e V  0, MC with the liquid 
model; +. MC with the gas-like model; - . -, model; +, MC with the gas-like model; - . -, 
Pearson I generated from KUBB~C moments using Pearson I generated from KUBBIC moments using 
the gas-like model; . . . . , ., Peanon I generated the gas-like model; . . . . . ., Peanon I generated 
fmm KUBBIC moments using the liquid model. from KUBBlC moments using the liquid model. 

combinations can be found in Ashworth et a1 (1990) and Bowyer er a1 (1992b). It can 
be seen from figures 3 and 4 that the differences between the moments in the two 
models causes the depth profiles to vary significantly. 

Z2. Effect of ihe slopping energy E, 
The new TE includes a minimum energy E, at which the ion is assumed to stop. In 
I no such energy was employed. Figure 5 compares KUBBIC runs for both gas-like 
and liquid models with E, = OeV and E, = 5eV Considering the results in figure 5, 
together with the excellent agreement (figure 2) obtained with the MC code (when 
KUBBIC includes E, in the transport model), matching the stopping energy is indeed 
important. 

8. Conclusions 

A vector transport equation (E) that incorporates an arbitrary free-flight path 
distribution and a stopping (or intermediate) energy has been derived. The new 
TE takes the form of an integral equation in contrast to integro-differential equations 
derived by prior assumption of the gas-like model. A generator equation has been 
derived that allows moments up to a given order to be computed. This generator 
equation has been manipulated into a form in which a solution of the resulting 
coupled set of integral equations (for Legendre coefficients) can be approached using 
existing numerical procedures. A generator equation for the liquid model has been 
derived and a set of eight integral equations, required for the calculation of moments 
of order up to four, has been presented and implemented in a revised version of the 
KUBBIC code. A comparison of moments generated using gas-like and liquid models 
has been performed for the ion As implanted into aSi over the energy range 1 keV to 
1 MeV: Ewcellent agreement between third- and fourth-order moments generated by 
the KUBBIC code and a MC code based on TRIM has been demonstrated. This was only 
achieved by a combination of three factors: (i) use of the two-parameter differential 
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Feure 5. Comparison of moments for As into aSi using minimum energies E$ = OeV 
and E, = 5 ev: 0, MC with the gas-like model; *, MC with the liquid mcdei; -, KUBBIC 
with the gas like model and E, = 5eV; - . -, as before with E, = OeV; - - -, KUBBIC 
with the liquid model and E, = 5 eV; . . . . . ., as before with E, = OeV. 

scattering cross section (the default in TRIM); (ii) use of the same free-flight path 
length model (gas like or liquid) in both the transport theory and the MC codes; and 
(ai) inclusion of a stopping energy. Significant deviation between gas-like and liquid 
models is apparent at energies below - lOkeV when both models are used in the 
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same code. 

Appendix 

We split the first integral in (11) into two, and wite 

Now, let us consider the probability density 

+ /mf(l)(/Tm*' @(E,-  
AI T.1. 

From the derivation in section 2, equation (A2) can be physically interpreted as the 
probability density that the ion undergoes irs first scattering event after travelling a 
distance A1 < 1 < CO in the direction G and then comes to rest at r .  This must equal 
the probability that the ion travels a distance Al, without being scattered, multiplied 
by the probability density that the ion comes to rest at T afier travelling a distance 
Al. Since, for a Poisson distribution, exp(-ALIA) gives the probability the ion will 
travel a distance Al  without undergoing a nuclear scattering event, the probability 
density in equation (AZ) is therefore equivalent to: 

exp (F) F( E - N S J  ~ p l ,  G ,  E,, r - GAZ). (W 
Eliminating the second integral in (Al) by use of equations (A2) and (A3) gives 

+ SA' f ( l )  (ST"' e( E, - 
0 Tman 

+ e x p ( q ) F ( E  - N S , ( E ) A ~ , G ,  E,,T - 6 ~ ) .  ('44) 

Expanding the first and third terms in equation (A4) to order A1 gives 

Zr TM de,, d p  F ( E , G , E , , r )  = - F ( E - ~ , , , G ' , E ~ , r ) B ( E - ~ , , - E ~ ) - -  
un 2x 

a F ( E ' G ' E s ' T )  -AlG.grad,F(E,G,E,,r)  - NS,(E)A/ 

A1 t F ( E , Q ,  E , , r )  - F ( E , G , E s , r ) -  + O(A1'). x 

a E  
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Dividing through by Al and taking the limit A1 i 0 gives 

dP - F(E - T,,J’,E,,T)B(E - T, - E,)]dEr,- 
2x 

where we have used 

in which g( I) is an arbitrary function of 1. Equation (A6) is a vector version of the LSS 
integrodifferential equation, modified to include a stopping (or intermediate) energy. 
%king spatial moments and expanding using Legendre polynomials as described in 
Winterbon el a1 (190) one obtains (24), a generator equation for the Legendre 
coefkients F;”( E, E,) for the gas-like model. 
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